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1.0 Summary
Thin film solar cells based on CIS-type absorbers show great promise in moving towards
commercialization with photoconversion efficiencies approaching 20%.  Thus far, the
record laboratory efficiencies have been achieved using vacuum-based deposition
techniques, the scale-up of which to large areas for high volume production presenting
several challenges.  Low cost particle coating methods present an interesting alternative to
costly vacuum deposition techniques, offering the possibilities of compositional control,
high materials utilization and inexpensive deposition over large area substrates.  The R&D
program at ISET is centered on development of a novel, dispersion based route to the
deposition of precursor thin films that are converted to CIS-type absorbers through high
temperature reactions at or close to atmospheric pressure.

The goal of the current research program at ISET is to bring a non-vacuum processing
route for CIS closer to commercialization by improving the device efficiency through an
increase in absorber bandgap.  The basic processing approach involves first synthesizing a
powder containing the oxides of copper, indium and gallium.  A dispersion (ink) is
prepared from the starting powder by mechanical milling or sonication.  This ink is then
deposited onto the glass/moly substrate as a thin precursor (3-4 µm) and converted to a
metallic alloy film by reaction in a hydrogen atmosphere.  Controlled synthesis of starting
powders and proper reduction results in reasonably smooth, metallic precursor films
similar to those produced by sputtering or evaporation.  From this point the processing is
similar to that in the other two-stage techniques, with the metallic film being reacted in
H2Se to form the final photovoltaic absorber, followed by CdS and TCO deposition.

Although CIS efficiencies greater than 12% have been demonstrated using ISET�s non-
vacuum approach, further increases in efficiency require the addition of gallium or sulfur
to raise the bandgap (for CIS, Eg ≈ 1.0).  The inclusion of gallium has been demonstrated
to increase the efficiency of solar cells grown by the co-evaporation technique.  Higher
open circuit voltages are produced when the large bandgap semiconductor CGS is formed
near the p-n junction.  This bandgap increase has been shown to yield efficiencies of over
18%.  In the two-stage process, however, the incorporation of gallium in the bulk of the
absorber results in a small grained material and causes poor current collection and low fill
factor.  Efficiency increase due to gallium inclusion in selenized films is generally limited
to a back surface field effect.  The gradation in gallium concentration toward the Mo/film
interface that generally occurs during selenization can create an electric field to aid in
carrier collection deep inside the film and thus improve the current.  With this approach
sulfur must be incorporated into the active area of the absorber near the junction to
increase the bandgap and yield higher open circuit voltages.

During the first year of the Phase II program, work was focused on the following main
areas: i) further understanding of sulfur and gallium distributions in films of various
compositions, ii) incorporation of sulfur into absorbers produced by the non-vacuum
process and iii) fabrication of high efficiency devices and sub-modules.  The incorporation
of sulfur into CIGS was found to be more favorable in Cu-rich films, aided by the
secondary phase of Cu-Se.  For gallium diffusion from the back of CIGS films, the
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situation is reversed with the diffusion to the front being more favorable for In-rich films,
and little gallium diffusion taking place in near stoichiometric films.  Using a gallium rich
phase at the Mo interface to produce a back surface field, and sulfur at the junction to
increase the bandgap, device efficiencies of 13% have been achieved with
selenized/sulfurized samples (A<0.1cm2) from non-vacuum deposited precursors (12.5%,
1-5cm2).  Moly has been successfully laser scribed in house and mini-modules
(A<100cm2) have been fabricated with efficiencies over 8% and Voc�s per cell over 480
mV (evidence of increased bandgap).

2.0 Introduction
In order for thin film CIS to realize its potential as a viable photovoltaic material, low cost
deposition methods must be found that are capable of producing solar cell quality
absorbers over large areas with high yields and high materials utilization.  Vacuum growth
techniques such as co-evaporation or MBE and two-stage routes such as sputtering or
sequential evaporation followed by selenization have proven capable of producing high
efficiency devices, but capital equipment costs are high and controlled deposition over
large area substrates is difficult.  In chalcopyrite materials processing, precise deposition
control is crucial to formulating compositions (Cu/(In+Ga) ratios) in the proper range for
high efficiency device formation.  Particulate routes to CIS precursors address this problem
by precisely controlling the atomic ratio at the sub-micron level in the starting powder of
dispersion.  In this way, the composition is fixed regardless of the deposition method
employed, or any local thickness variation that occurs during the formation of the film.

Several efforts have been made at producing solar cell quality CIS by particle deposition
techniques.  Researchers at Matsushita attempted early on to mix together Cu, In and Se
powders in a liquid medium to produce a screen printable paste.  During the milling of
these powders to reduce the particle size and intimately mix the constituents, it was
observed that some of the starting materials reacted to form CIS.  This precursor paste was
screen printed onto substrates and annealed at high temperature, but the resulting CIS was
poorly fused and could not be used for solar cell fabrication.  Several research groups have
also attempted particulate processing schemes involving the deposition of selenide
powders.  Recently, researchers at NREL reported the growth of CIGS solar cells from
spray deposited Cu-In-Ga-Se nanoparticles1.  Colloids containing ultrafine powder (10-
50nm) were synthesized and sprayed onto glass/moly substrates as precursor films.  These
mixed selenide powder precursors were then annealed under a high Se flux at 550C and the
composition was adjusted to near stoichiometric CIGS by evaporating In and Ga.  SEM
examination of the final film microstructures showed a fine-grained region that
corresponded to the spray deposited powder.  Devices were fabricated on absorbers
prepared by this powder spraying method but an efficiency of 4.6% was the highest
obtained.  It was concluded that similar processing must include a step that allows film
fusion and grain growth in order to be effective in producing solar cell quality materials.
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2.1 ISET�s powder processing route to CIGS

The non-vacuum approach to the processing of CIS at ISET has demonstrated solar cell
efficiencies over 12% using an inexpensive, dispersion based approach.  Rather than
starting with metal or selenide powders, oxide powders are synthesized that can be
successfully dispersed in water to form a stable ink.  Proper synthesis of the powder
ensures that the constituent elements (Cu, In and Ga)* are uniformly mixed at an extremely
small scale (~10-20nm).  Solution processing routes are also capable of producing fine,
sub-micron powders, eliminating the need for grinding and milling to reduce the particle
size to within the range suitable for thin film deposition (particle diameter < 0.5µm).
Figure 1 is an example of the results of a measured particle size distribution for a typical
powder synthesized at ISET.  The median of the size distribution lies at approximately
250nm.  When this powder is mixed in water (with dispersing agents), the composition of
the final film is fixed at any point on the substrate.  The Cu/(In+Ga) ratio of the CIGS
absorber material is uniform despite any irregularities in film thickness that might originate
from deposition process employed.  Fixing the atomic ratio within the powder eliminates
the need to have exacting control over deposition rate and thickness, allowing quick,
inexpensive deposition (roll coating, spraying, etc.) to be carried out over extremely large
areas (>1m2) with precise lateral and vertical composition control.
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Figure 1).  Particle size distribution for standard Cu-In-Ga-O powder synthesized at ISET
and used in the formation of CIGS absorber materials.

* Ga inclusion studies are funded through a contract from ATP/NIST
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The initial step in the ISET process is the synthesis of oxide powder by co-precipitation,
spray pyrolysis, etc., containing the proper ratio of Cu, In and Ga (i.e. Cu/(In+Ga) = 0.94,
Ga/(In+Ga) = 0.25).  An aqueous ink is formulated from the powder for deposition onto
Mo/glass as a precursor film.  The surface chemistry of this ink can be controlled by pH
adjustment or the additions of various surfactants, dispersants or electrolytes in order to
produce the proper rheology for the desired coating method (e.g. doctor blading, spraying,
roll coating, screen printing, etc.).  Figure 2 shows an example of the effect of pH
adjustment on the viscosity of a CIGO ink used for coating.  At high pH the powder
surfaces are highly charged and the particles are repulsive to one another, creating a highly
dispersed system and a low, Newtonian viscosity.  Adjustment of the pH towards acidic
conditions neutralizes some of the negative surface charge and produces an attractive
particle network, and a consequently a higher, shear thinning viscosity.  When the
dispersion rheology is adjusted to the proper range, the ink is deposited onto moly coated
soda-lime glass.  This film is then annealed in a reducing atmosphere to produce a metallic
phase.  It is this reduction step that allows the initial powder film to fuse into a dense,
compact precursor layer that is subsequently selenized.  The reduced film is similar to
precursor films produced by vacuum deposition techniques (sequential evaporation,
sputtering) for 2-stage absorber growth, except that the surface is somewhat rougher.
During the selenization process, the reaction of copper, indium and gallium with H2Se
leaves a majority of the gallium located at the rear of the absorber.  Although this gallium
rich phase aids in current collection by providing a back surface field, it does nothing to
increase the open circuit voltage of the device.  In order to open up the bandgap, films are
reacted with H2S or annealed at high temperature to diffuse gallium towards the junction.
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Figure 2).  Plot of viscosity versus shear rate for CIO powders at various pH values.
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2.2 ISET program goals and milestones
The initial Phase of the current program at ISET was geared towards the fabrication of
high bandgap chalcopyrite absorbers.  Vacuum deposition methods were mainly utilized
for precursor film formation and the resulting absorber materials were characterized to
develop an understanding of the diffusion of Ga and S.  The first year of the Phase II
program was focused on the extension of the sulfur and gallium inclusion efforts to the
non-vacuum processing route.  The e-beam evaporated films continued to see use in
fundamental studies of diffusion mechanisms.  Effort was concentrated on developing an
understanding of sulfur and gallium distributions in films of various compositions
produced by the non-vacuum process.  Time was also devoted to the use of the non-
vacuum deposited absorbers for the fabrication of high efficiency devices and sub-
modules.  Using a gallium rich phase at the Mo interface to produce a back surface field,
and sulfur at the junction to increase the bandgap, device efficiencies of 13% have been
achieved with selenized/sulfurized samples from non-vacuum deposited precursors.  Moly
has been successfully laser scribed in house and mini-modules (A<100cm2) have been
fabricated with efficiencies over 8% and Voc�s per cell over 480 mV (evidence of
increased bandgap).  Continued basic research on sulfur diffusion in e-beam deposited, Cu-
rich films revealed the excess Cu-Se to be located near the back of the film, as opposed to
in the front as is the case for co-evaporated films.  This surprising result lead to the
realization that starting with highly Cu-rich films and bringing the ratio back to near
stoichiometric with Ga-Se and/or In-Se will not lead to high efficiency absorbers.

3.0 Technical Results and Discussion

3.1 Sulfur distribution studies

In Phase I of the current program, results were reported for studies on sulfur distributions
in CIGSS films prepared from e-beam deposited precursors.  It was determined that the
nature of the S profiles in high temperature sulfurized CIGS layers was strongly dependent
upon the initial CIGS stoichiometry.  Sulfur distribution was found to be near uniform in
Cu-rich CISS layers, with sulfur diffusion being aided by the presence of the secondary
phase of Cu-Se.  In near stoichiometric films, the sulfur diffusion was curtailed such that
the surface concentration was highly sulfur rich, but little sulfur diffused into the bulk.
Sulfur diffusion was also slower in highly In-rich absorbers but with the decreased grain
size at the back resulting in a high level of sulfur at both the front and back interfaces.

In order to explain the observed sulfur diffusion phenomena, an estimate was made of the
diffusion constant of sulfur in Cu-poor materials.  Using near-surface S distribution data
from the Auger depth profiles, and assuming a constant source of S at the surface of the
film, a diffusion equation can be formulated as:

C(x,t) = Cs erfc (x/2(Dt)1/2).

For the case of x<< 2 (Dt)1/2, this can be simplified to:

C(x,t) = Cs (1-x/3.14(Dt)1/2),
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and the diffusion constant D can be obtained from the slope of the C(x,t)/Cs vs. x plot.
Using a time of 20 minutes and x values less than 900Å, the diffusion constant was
estimated to be D = 3x10-13 cm2/sec.  This result was compared to the value previously
reported by the IEC group for S diffusion in slightly Cu-rich CIS (D = 1.5x10-11 cm2/sec),
to show that the S diffusion is approximately two orders of magnitude slower in Cu-poor
materials.  This result demonstrated the dependence of the S diffusion on the CIS
stoichiometry and the consequences when attempting to form highly graded bandgap
absorbers.

Additional studies were undertaken to verify the assumption used in the aforementioned
calculation that the surface concentration of S is constant regardless of the initial CIS
stoichiometry.  Several Cu-rich and In-rich samples were annealed in H2S and/or N2 for 20
to 90 minutes at 475, 525 or 575ºC (total time at high T was kept constant at 90 minutes
and the exposure time to H2S was varied).  Plotting the surface S concentration as a
function of 1/T, an activation energy can be determined that gives rise to the sulfurization
of the film surface.  Activation energies of 0.14eV and 0.62eV were estimated for the
sulfurization of Cu-rich and In-rich surfaces respectively.  The implication of this
difference in activation energy is that the sulfur distributions measured in the previous
study were not steady state profiles, but rather depend on the sulfurization time and
temperature.  Thus, calculation of the diffusion constant based on the assumption of
constant surface S concentration is incorrect.  Sulfur inclusion into Cu-rich surfaces is
more favorable, and diffusion through a Cu-rich matrix occurs more rapidly, but additional
experimentation/modeling needs to be carried out to clarify the observed phenomena.

3.2 Sulfur inclusion into materials deposited by the non-vacuum process
The majority of the work at ISET on sulfur inclusion into CIGS films has been focused on
materials produced by the selenization of vacuum deposited precursors.  An efficiency of
13.7% was demonstrated with a near-stoichiometric CIGSS film that was annealed at high
temperature for 20 minutes under flowing H2S.  In Phase II emphasis was placed on the
sulfurization of absorbers produced by the non-vacuum approach and increasing the
voltage of devices without severely lowering the current collection.  The focus of the most
recent work was the effect of Cu/(In+Ga) and Ga/(In+Ga) ratios on the extent of sulfur
inclusion and Voc increase.  In the previous quarter results were reported for
selenized/sulfurized samples containing Ga and produced from non-vacuum deposited
precursors (Ga inclusion studies are supported by ISET�s contract with the Advanced
Technology Program).  Efficiencies in the 11-12% range were consistently achieved using
precursor inks with Cu/(In+Ga) and Ga/(In+Ga) ratios of 0.84 and 0.16 respectively.
Figure 3, for example, shows the results of a device efficiency measurement conducted at
NREL of an ISET CIGSS device.  Auger data of similar absorbers, also taken at NREL,
showed the Ga concentration to be increasing towards the back of the film as shown in
Figure 4 (sulfur composition not measured).  Based on the previous sulfur diffusion results
from this study, it would be expected that sulfur incorporation in such a Cu-poor film
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Figure 3).  I-V characteristics and quantum efficiency of a CIGSS device prepared by the
ISET non-vacuum process.
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would be slow and little sulfur would diffuse into the bulk of the absorber with a somewhat
higher sulfur concentration near the moly interface.  It is observed that after high
temperature reaction with H2S, the Voc of devices made from this precursor material
increases to >500mV with very little corresponding decrease in Jsc.  This suggests that the
sulfur diffusion into the bulk of the CIGS is limited and only the surface region is reacting
to form CISS with the gallium remaining at the Mo interface to create a back surface field.
This processing scheme has resulted in devices with efficiencies exceeding 13%, with Voc
values in excess of 500mV.  The highest efficiency achieved thus far with materials
produced from non-vacuum deposited precursors is 13.6% for a 0.087cm2 device
(efficiency measured only at ISET).  A schematic representation of this I-V measurement
is given in Figure 5.  The measured current/voltage characteristics for this champion cell
were as follows: Voc = 515mV, Jsc = 37.2mA/cm2, FF = 70.8%.

It has been observed that selenization/sulfurization conditions (575°C, 20 minutes, 10%
H2S) that lead to high voltages and efficiencies in e-beam deposited films (Voc>550mV,
η>13.5%) do not have as much of an effect on non-vacuum deposited precursors.  When
reduced films are selenized and sulfurized along side metallic films deposited by
evaporation, the vacuum deposited films generally exhibit a higher voltage (although they
may or may not be higher efficiency).  Studies are being undertaken to understand this
difference in the extent of sulfur incorporation between the two types of precursors in order
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Figure 5.) Schematic of the efficiency result for ISET�s champion cell: η = 13.6%, Voc =
515mV, Jsc = 37.2mA/cm2, FF = 70.8%.

to optimize the sulfur profiles in non-vacuum processed films.  There are a few distinctions
between these two precursor types that could lead to a difference in open circuit voltage.
Films deposited as a powder coating and subsequently reduced are generally thicker than
those deposited by evaporation (2-3µ vs. 1.5-2µ).  This increased thickness avoids any
problems of shorting that might arise due to incomplete surface coverage of the coating.
The non-vacuum precursors also frequently contain some residual oxygen left by
incompletely reduced gallium or indium oxides.  The microstructures of CIS films
produced from the two types or precursors are similar, with the exception of a variation in
surface roughness.  The reduced powder films are rougher than the corresponding metal
films produced by e-beam evaporation and consequently the CIS produced also exhibits a
rougher surface (typically 1µ hill-to-valley for non-vacuum vs. 0.5µ for e-beam).  This
roughness increases the junction area, and also has some effect on gas flow across the
surface and diffusion into it.

Because of the observed differences in sulfur incorporation between the non-vacuum and
e-beam deposited films, more fundamental studies of sulfur profiles under various
reactions conditions are necessary.  Experiments have already been conducted in which the
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concentration of H2S has been varied, as well as the time and temperature profiles of
sulfurization, and the effect on Voc has been measured.  Recent work has emphasized
varying the ratios of Cu and Ga in the precursor inks to see their effects on S inclusion.  To
this end, powders have been synthesized containing Cu/(In+Ga) ratios from 0.84 to 0.94,
and with Ga/(In+Ga) ratios from 0.14 to 0.35.  Preliminary results for the precursors with
high gallium concentrations suggest that the extent of sulfur inclusion does not depend
upon the amount of Ga in the film.  Absorbers containing 35% Ga show similar open
circuit voltages as those with 14%.  Additional work needs to be carried out to measure the
S distribution profiles for the non-vacuum deposited films in order to optimize the
processing and achieve a graded bandgap absorber (high S concentration at junction, high
Ga concentration at Mo interface).  A study of the effect of increased Ga and S
concentrations on the microstructure of the materials will also be initiated.  A second
reaction chamber has also been upgraded at ISET to include sulfurization capability and
the maximum flow rate in both furnaces has been increased (maximum flow rate = 100
sccm H2S).  Analysis of the results from these S experiments should provide the
information necessary to increase the open circuit voltage of non-vacuum deposited CIGSS
beyond the current 480-515mV range (without significant loss of Jsc or FF).

3.3 Cu Distribution in Cu-rich Selenized Films

Auger depth profiling studies have been carried out in Phase II to understand the
distribution of copper in Cu-rich (CIS+Cu-Se) selenized films.  The present models for the
growth of Cu-rich films by the co-evaporation technique assume the excess Cu-Se phase to
be at the top surface of the film.  Experimental evidence confirms this property which
allows In(Ga)-Se to be deposited at the later stages of film growth and react with the Cu-
rich precursor to bring the overall composition to near stoichiometric (but slightly Cu-
poor).  It was attempted to use such a multi-step process to grow device quality CIGS films
at ISET.  Cu-rich CIGS layers were fabricated by selenization of e-beam deposited
precursors and In(Ga)-Se was evaporated at high temperature to adjust the composition.
The results suggested that there was little intermixing between the Cu-rich bottom layer
and the In(Ga)-Se top layer and the approach was not capable of producing high efficiency
devices.  In attempting to understand the difference in precursor films produced by this
method and by co-evaporation, several Auger depth profiles were taken of Cu-rich
selenized films.  It was observed that the excess Cu in these films was consistently located
near the Mo interface and not on top of the growing film as would be expected from co-
evaporation results.  Figure 6 is an example of an Auger profile of a slightly Cu-rich film
formed by the selenization of a e-beam evaporated precursor.  It is apparent that at about
half of the film thickness, the copper concentration begins to increase while that of In and
Se begin to decrease.  To see if the observed Cu segregation was the same in Ga and S
containing absorbers, slightly Cu-rich CIGS and CISS films were also grown and analyzed
and similar results were obtained.  The proposed mechanism (described below) explains
how metallic precursors convert to selenides in such a way as to leave the excess Cu-rich
phase at the rear of the absorber, near the Mo interface.
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E-beam evaporated precursor films contain Cu-rich and In-rich alloys which convert to the
stable Cu11In9 + In phases above 150°C.  The surface region of the film is slightly In-rich,
so as the temperature of the substrate is raised beyond approximately 250°C in a selenizing
atmosphere, a crust of selenides is formed with a Cu-poor composition.  As the
temperature is raised beyond 350°C, the formation of CIS consumes most or all of the
excess In within the thickening crust.  The rather stable Cu11In9 phase is somewhat
screened from the selenizing environment by the growing selenide crust and is left near the
Mo interface, only to be consumed in the final stages of selenization at high temperature.
Eventually the Cu11In9 phase releases its excess Cu to form the secondary Cu-Se phase,
which is accommodated on the free surfaces of smaller grains at the Mo interface and on
the boundaries of the larger grains.  At Cu/In ratios of 1.2 or greater, the volume of Cu-Se
phase has increased to the point where it may break through the surface crust of CIS at
microscopic thickness and/or composition non-uniformities.  In the present study this was
observed for films with Cu/In ratios in the 1.2-1.5 range, with the area density of isolated
Cu-Se grains growing with increasing Cu/In ratio.  If the Cu/In ratio were further
increased, eventually the excess Cu-Se phase may cover the entire surface of the CIS layer.
However, this Cu segregation to the Mo interface in slightly Cu-rich precursors prevents
the Cu-rich/In-rich growth method commonly used in co-evaporation scheme from being
successfully utilized for high efficiency absorber growth by the selenization technique.
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3.4 Modules/Laser Scribe

The most important task of this program is the development of high efficiency modules.  In
the past year, equipment has been purchased and installed to allow for moly back contact
patterning with a microlaser.  A 26� x 26� X-Y table manipulates the glass substrate while
the laser scribes the moly for module processing.  This low power laser (11mJ) is capable
of producing narrow scribes approximately 25-50 microns in width in a single pass.  This
decreased scribe width greatly reduces the problem of de-wetting of the scribes that was
commonly observed with the ink coating process on Mo scribed using photolithographic
techniques.  The surface chemistry of the precursor can also be manipulated to promote
wetting of the scribe lines and improve the continuity of the CIS.  With this microlaser in
operation, sub-modules have been processed using the conventional three scribe
integration scheme: laser-scribe Mo coated glass and deposit interlayer to enhance wetting,
coat pn-junction materials and mechanically scribe, deposit TCO and mechanically scribe
(or pattern/etch).  ISET has experimented with several of these microlasers and each has
shown stability problems, often after only a short period of continuos operation.  The
equipment is now in place to produce high efficiency modules using the new non-vacuum
approach, however, frequent laser failure will require us to revert back to the previously
used photolithographic method or purchase a more powerful and reliable laser.

Problems with the integration process are being worked out which currently are limiting
the efficiency of ISET sub-modules.  Figure 7 is an example of the illuminated I-V
characteristics and quantum efficiency of a recently processed CIGSS module.  Although
cell efficiencies are consistently in the 10-13% range over 3� x 5� pieces, the champion
sub-module efficiencies have been limited to 8-8.5%.  The module in Fig. 7 has an area of
65cm2 and gives and output of 522mW (Voc=7.84V, Jsc=1.66A, FF=61.9%, 16 cells in
series).  The voltage of this module is 490mV/cell but the fill factor and current are
somewhat low and would improve with better integration processes.  The mechanical
scribing set-up does a poor job with the final isolation, severely damaging the ZnO layer.
A large dead area exists between scribes on each cell, and the contact resistance is very
high which lead to lower current values and poor fill factor.  Continuing efforts in Phase II
will attempt to improve the scribing approach, as well as developing alternative integration
schemes including an all laser-scribed module and printed contacts (fewer scribes).

3.5 Large area selenization reactor

During this quarter, ISET has been upgrading its module processing capability by
installing a new heating system and new gas tubing into the large area reactor that will
allow both selenization and sulfurization of 13� by 13� substrates.  A graphite heating
system was designed and installed by Dave Bender of Bentronics.  All of the necessary
hardware is in place and experiments are being carried out to improve the temperature and
gas flow uniformity of the system.  Trial runs have been made under various selenization
conditions including high and low flow rates at atmospheric pressure, high and low flow
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Figure 7).  I-V characteristics and quantum efficiency of a CIGSS sub-module prepared by
the ISET non-vacuum process.
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rates under slight vacuum, and under static conditions with different amounts of hydrogen
selenide.  When the system is optimized, ISET will have all of the necessary equipment in
place for producing 1ft2 monolithically integrated modules.

ISET has collaborated with NREL sub-team members at the University of Florida (Prof.
Tim Anderson and Suku Kim) in order to improve our understanding of the flow
conditions encountered in the large area selenization reactor.  A 2-dimensional model has
been developed which takes into account different flow rate conditions as well as different
geometries for both the reactor and the gas inlet tubes.  The model is being used to
determine the proper flow rate regime for optimized gas flow as well as to investigate
alternative reactor configurations.  Preliminary results for the current set-up explain the
large non-uniformities recently observed in selenized films.  The modeling clearly shows
that the gas velocity over the sample in the present set-up is highly non-uniform,
particularly near the center and edges of the substrate, at both low and high flow velocity
conditions.  Figure 8 (a, b, and c) shows the overall flow pattern, the flow speed around the
gas inlet and the distribution of flow speed across the substrate for half of a sample (the
model is symmetric about the center of the substrate) in the large area reactor.  It is
apparent that the gas velocity is near zero at the surface across a large portion of the
substrate.  This results in a thick boundary layer and makes the exchange of the reactant
(hydrogen selenide) and reaction product (hydrogen) difficult.  Using similar modeling and
varying the gas flow velocity and reaction chamber geometry has resulted in suggested
modifications that will result in more uniform gas flow conditions.  Taking advantage of
these results to modify the current set-up should improve the thickness uniformity of the
boundary layer at the substrate and improve the exchange of molecules between the gas
and the reaction products from the surface.  With these modifications in place, the
optimized large area reactor will give ISET the capability of processing 1ft2 size
monolithically integrated modules based on absorber materials from the non-vacuum
process.

3.6 Alternative Buffer Layers

During Phase II, ISET has collaborated with sub-team members at the University of
Florida on non-Cd containing buffer layers2.  Several materials in the sulfide and
hydroxide classes were investigated for possible replacement of CdS.  Comparisons were
made between ISET films, as well as Siemens Solar Industries (SSI) films, containing
CdS, (CdZn)S, In(OH)xSy, or ZnS buffer layers (deposited at Univ. of Fla.).  The films
were deposited by chemical bath deposition and XPS was conducted to determine the
compounds present.  The In(OH)xSy cell showed a lower Isc due to a lower spectral
response in the long wavelength region.  The relatively thick ZnS buffer layer resulted in a
high series resistance and caused poor fill factor.  The (Cd,Zn)S layer contained a large
amount of oxygen and yielded poor current and fill factor as well as lower voltage
compared to the cell with pure CdS.  It was apparent that the CIGSS cell with the
conventional CdS buffer layer again resulted in the best efficiency.
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Figure 8).  Initial results of 2-D computer modelling being carried out at the University of
Florida to optimize the gas flow uniformity in ISET�s large area selenization reactor.

(a) Overall flow pattern

(b) Distribution of flow speed over substrate region

(c) Flow speed around gas inlet
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4.0 Future Work

Work will continue on the inclusion of sulfur into absorbers grown by the non-vacuum
process.  Emphasis will be placed on characterizing S and Ga compositions (Auger) as
functions of Cu/(In+Ga) and Ga/(In+Ga) ratios.  The goal will be to optimize the S and Ga
profiles in order to increase the bandgap and improve the open circuit voltage and
efficiency of devices.  Temperature and gas flow uniformity will be optimized in the large
area selenization reactor and fabrication of high efficiency sub-modules (12� by 12�)
accelerated.
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